Parametric Formulas

Parametric Form of the Derivative

If a smooth curve C is given by the equations $x=f(t)$ and $y=g(t)$, then the slope of C at (x, y) is

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}, \quad \frac{d x}{d t} \neq 0
$$

The second derivative is given by

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{\frac{d x}{d t}}, \quad \frac{d x}{d t} \neq 0
$$

Arc Length in Parametric Form

If a smooth curve C is given by $x=f(t)$ and $y=g(t)$ such that C does not intersect itself on the interval $a \quad t \quad b$ (except possibly at the endpoints), then the arc length of C over the interval is given by

$$
s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Area of a Surface of Revolution

If a smooth curve C given by $x=f(t)$ and $y=g(t)$ does not cross itself on an interval $a \quad t \quad b$, then the area S of the surface of revolution formed by revolving C about the coordinate axes is given by the following.

1. $S=2 \pi \int_{a}^{b} g(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad$ Revolution about the x-axis: $g(t) \geq 0$
2. $S=2 \pi \int_{a}^{b} f(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad$ Revolution about the y-axis: $f(t) \geq 0$
